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A B S T R A C T

Eight machine learning (ML) frameworks were established for predicting γ′-depleted zone (GPDZ) evolution in 
MCrAlY-coated IN792 superalloys, based on the 301 experimental datasets from high-temperature diffusion tests. 
Thereinto, XGBoost model with Bayesian optimization demonstrated the best performance with a high R2 of 
0.9696 and a low mean absolute error of 3.579. SHAP analysis on the results identified temperature/time as the 
dominant kinetic drivers, while Ni/Co/Ta suppressed the GPDZ growth and Fe/Cr/Al accelerated the γ′ deple-
tion. The trained model was employed to predict growth kinetics of GPDZ in changes of time and compositions 
and also was evidenced to direct the coating design with reduced degradation of substrate microstructure. This 
data-driven approach constructs a strongly efficient tool for the composition-microstructure correlation, over-
coming the high-time-cost limitation on the traditional thermodynamic methods in multi-component systems.

1. Introduction

One of great advances in aircraft engine industry is the use of thermal 
barrier coatings (TBCs) that significantly improves the operating tem-
perature and oxidation resistance of superalloys, the state-of-the-art 
materials for the core section of turbine blades [1–5]. These advan-
tages are achieved by a ceramic topcoat with a low conductivity and a 
metallic bond coating [6–10]. MCrAlY (M = Ni and/or Co) coatings, as 
the typical metallic bond coating materials, contains approximately 50 
vol% β-NiAl precipitates as Al reservoirs, facilitating the formation of a 
dense, continuous and thermal-growth Al₂O₃ layer to inhibit oxidizing- 
gas penetration [11–13]. Unfortunately, over 1000 ◦C, a heavy 
MCrAlY-coating/superalloy (MC/S) interdiffusion often occurs, causing 
catastrophic degradation of the γ/γ′ microstructure to a γ structure in the 
substrate and thus the reduction of its mechanical properties [14–16]. 
For example, coated superalloys exhibit reduced creep or fatigue life 
compared to uncoated counterparts under identical conditions [17–19]. 
Hence, the oxidation-resistance advantage from MCrAlY coatings comes 
at the expense of reduced mechanical properties.

MC/S interdiffusion is a complex element-migration process, 

involving more than 8 multi-components [20–22], the mutual interfer-
ence between them [23–25] and the diffusion-induced phase transitions 
[26–29]. In previous research, thermodynamic simulations were used to 
predict the γ′-depleted during the coating/superalloy interdiffusion 
process via calculating phase equilibrium and diffusion step [30–32]. 
However, the phase-equilibrium calculation is a very time-consuming 
step, since it requires calculating the minimum Gibbs free energy for 
each point in the system. Additionally, simulating one case using this 
method usually takes several weeks or months, up to the complexity of 
the system. Clearly, it could not meet the rapid demand of numerous 
calculations for coating design. Given this limitation, machine learning 
(ML) has emerged as an important complementary approach. ML le-
verages computer logic to directly construct the mapping relations be-
tween the input features (composition, temperature, time) and the 
output result of γ′-depleted zone [33]. In our work, the most important 
result was that we established the optimized ML model with high effi-
ciency calculation, enabling the facile predicting γ′-depleted zone (take 
only several seconds) and providing a broad compositional range for 
coating design to reduce the detrimental effects from the interdiffusion 
on superalloys.
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ML has been expanded into the field of materials science, such as the 
predictions of microstructure evolution [34,35], corrosion or mechani-
cal properties [35–38], and the optimization of manufacturing param-
eters [39–42]. Banko et al. [43] employed conditional generative 
adversarial networks (cGAN) to link sputtering parameters with Cr-Al- 
O-N film grain sizes, enabling process optimization. Peng et al. [44] 
proposed a support vector machine (SVM) model to predict oxidation 
rate constants (kₚ) for NiCr-based alloys at a temperature range of 
800–950 ◦C. In coating design, Jia et al. [45] linked 14-dimensional 
features to wear resistance via XGBoost, highlighting bonding strength 
(Lc1) as a key factor for high-entropy nitrides. Xu et al. [46] applied 
random forests (RF) to optimize Al/Cr ratios in ultrahard high-entropy 
ceramics, revealing bias voltage and composition effects on hardness. 
For performance prediction, Wang et al. [47] combined RF and gradient- 
boosted trees to decode tribological responses of WS2 coatings under 
complex loads, while Ma et al. [48] fused neural networks (ANN) with 
RF to predict corrosion lifetimes of Cr/GLC coatings (97.9 % accuracy) 
using electrochemical and porosity data. These studies indicate the 
unique advantage of ML to investigate complex material system and it is 
expected the application of ML on the challenge of MC/S interdiffusion.

In this research, we gathered data on the thickness changes of 
γ′-depletion zone (GPDZ) with temperature, time and composition from 
a series of high-temperature MC/S interdiffusion experiments. Subse-
quently, we utilized eight algorithms to establish ML models, i.e., 
extreme gradient boosting (XGBoost), gradient boosting regression 
(GBR), random forest (RF), decision tree (DT), multi-layer perceptron 
(MLP), extreme learning machine (ELM), support vector regression 
(SVR), and k-nearest neighbors (KNN) regression. We further employed 
Bayesian optimizing method to achieve a precise prediction. Pearson 
correlation coefficients and SHAP (SHapley Additive exPlanations) 
values were systematically applied to decode nonlinear contributions of 
key features. This framework overcomes the dimensionality constraints 
of traditional single-scale simulations, establishing a cross-scale 
“composition-process-microstructure” correlation model, thereby 
providing quantitative guidelines for the design of high-durability 
coatings.

2. Methods

2.1. Data collection and processing

Fig. 1 illustrates the detailed workflow of this study, encompassing 
three critical phases: data collection and processing, model training and 
evaluation, and model analysis and prediction. The dataset of 301 
samples used in this research were accessed by a series of high- 
temperature interdiffusion experiments between MCrAlY coatings and 
the IN792 superalloy, as show in Table 1. The coatings were deposited 
on IN792 substrates via high-velocity oxy-fuel (HVOF) spraying. Post- 
spray heat treatment was performed to optimize the coating-substrate 
interfacial bonding and microstructure. The chemical compositions of 
the coatings and IN792 substrate were determined by wavelength- 
dispersive spectroscopy (WDS). These samples were suffered a long- 
term, high-temperature oxidation tests in a laboratory furnace at 900, 
1000 and 1100 ◦C for 0–12,000 h. Oxidized specimens were air-cooled, 
mounted in conductive resin, and polished. GPDZ thickness was 
measured based on the observed BSE-SEM images (see Supplementary 
Figs. S1–S3), with 10 measurements per sample averaged to minimize 
error. The input features include coating compositions, temperatures 
and diffusion times. The training target is the thickness of GPDZ. Fig. 2
shows the GPDZ distributions in various ranges and more details are 
provided in Supplementary Fig. S4.

To reduce dimensional disparities among input features, the dataset 
(excluding GPDZ values) was normalized to a 0–1 range using Z-score 
standardization. This step ensures balanced contributions of all param-
eters during the training, Normalized data is defined as: 

zi =
xi − μ

σ (1) 

where xi is the original feature value, μ and σ respectively represents the 
mean and standard deviation of the features across the dataset, and zi is 
the normalized value.

2.2. Model training

ML models were constructed by 8 algorithms (XGBoost, GBR, RF, DT, 
MLP, ELM, SVR and KNN) from the scikit-learn library in Python. These 
have covered the current mainstream ML methods, including tree-based 
ensembles (XGBoost, GBR, RF, DT) for nonlinear feature interactions, 
neural networks (MLP, ELM) for deep learning, and distance/kernel 
models (SVR, KNN) for comparability. Four error functions of determi-
nation coefficient (R2), mean absolute error (MAE), mean squared error 
(MSE) and root mean squared error (RMSE) were used as core metrics to 
evaluate model's performance. Their expressions are as following: 

R2 = 1 −

∑n
i=1(yi − ŷi )

2

∑n
i=1(yi − y)2 (2) 

MAE =
1
n
∑n

i=1
|yi − ŷi | (3) 

MSE =
1
n
∑n

i=1
(yi − ŷi )

2 (4) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2
√

(5) 

where n is the number of samples, yi and ŷi represents the observed and 
predicted values of the i-th instance, respectively, and y denotes the 
mean of all observed values. R2 serves as a metric to assess the 
goodness-of-fit of regression models, with a range from 0 to 1. High R2 

value means a strong correlation between predictions and measure-
ments, while lower RMSE, MSE, and MAE values reflect higher predic-
tive accuracy.

The dataset was randomly partitioned into 70 % training, 15 % 
validation, and 15 % test sets. The model generalization capability was 
evaluated by ten-fold cross-validation based on the MAE criterion. Prior 
to training, preliminary hyperparameter optimization was conducted 
via manual trial-and-error on account of algorithm-specific character-
istics. For tree-based models (XGBoost, GBR, RF, DT), critical parame-
ters governing structural complexity and generalization were adjusted 
to achieve a better training performance. In DT, the maximum tree depth 
(max_depth) was optimized to balance model complexity and overfitting 
risk. Random forest (RF) introduced the number of weak learners 
(n_estimators) to mitigate variance through ensemble averaging. 
Gradient boosting regression (GBR) iteratively refined DT-based weak 
learners, with n_estimators controlling iteration count and learning_rate 
regulating individual tree contributions to balance bias and convergence 
speed. XGBoost extended GBR by incorporating a leaf-wise regulariza-
tion term and min_child_weight to constrain minimum sample weights in 
leaf nodes, achieving superior bias-variance trade-offs.

Neural networks (MLP, ELM) were tuned by adjusting hidden layer 
architectures. MLP utilized two hidden layers with the Rectified Linear 
Unit (ReLU) activation to construct deep nonlinear mappings, while 
ELM adopted a single hidden layer with sigmoid activation for compu-
tational efficiency. Support vector regression (SVR) employed a radial 
basis function (RBF) kernel, with regularization parameter C and 
epsilon-insensitive loss parameter ϵ optimized to balance model 
complexity and generalization. For k-nearest neighbors (KNN), the 
Minkowski distance metric and n_neighbors parameter were adjusted to 
define local decision boundaries. After optimization on the training and 
validation sets, final performance was evaluated on the test set.
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Fig. 1. The workflow of the machine-learning (ML) training. The input features include temperature (T) and time (t) and compositions. The target is the thickness of 
GPDZ. Subsequently, the model is trained utilizing eight algorithms: XGBoost, GBR, RF, DT, MLP, ELM, SVR and KNN. Finally, the outcomes contain Pearson 
correlation, SHAP analysis and a “ternary-phase diagram” for GPDZ thickness.
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3. Results and discussion

3.1. Comparison of machine learning models

As summarized in Table 2, the performances of eight models were 
compared based on R2, MAE, MSE, and RMSE metrics. The XGBoost 
model achieved the highest predictive accuracy and stability with a 
lager R2 of 0.9574 and a small MAE of 4.276. The gradient boosting 
regression (GBR) model also demonstrated robust performance (R2 =

0.9534, MAE = 4.4585), validating the effectiveness of gradient boost-
ing in capturing feature interactions. Random forest (RF) and decision 
tree (DT) yielded R2 values of 0.9108 and 0.8330, respectively, indi-
cating the adaptability of ensemble methods for nonlinear modeling. DT 
exhibited significantly higher errors (MAE = 7.7494), suggesting 
elevated overfitting risks.

In contrast, MLP, ELM, SVR, and KNN displayed weaker general-
ization. The ELM model exhibited the poorest performance (R2 =

0.4485, MAE = 15.776), attributable to its fixed hidden-layer archi-
tecture and limited parameter flexibility, which hindered its ability to 
resolve complex nonlinear relationships. MLP partially mitigated this 
issue via a multi-layer structure (R2 = 0.5573), though further optimi-
zation remains warranted. SVR showed pronounced limitations in 
nonlinear adaptation (R2 = 0.5143, MAE = 14.631), reflecting con-
straints in kernel function selection and hyperplane partitioning. While 

KNN achieved a marginally higher R2 (0.5590) than MLP, its reliance on 
distance metrics rendered it susceptible to high-dimensional noise, 
resulting in a relatively larger MAE error.

Fig. 3 presents scatter plots comparing predictions and experiments 
for the eight ML models. Proximity of data points to the central dashed 
line (y = x) indicates high prediction accuracy. Both XGBoost and GBR 
exhibit tightly clustered points along the diagonal, particularly in the 
high-value range (actual >80 μm), demonstrating robust global fitting 
capabilities. While random forest (RF) maintains concentrated distri-
butions overall, a systematic lower-right deviation is observed in high- 
value regions, suggesting cumulative underprediction bias for extreme 
values. The DT model shows concentrated scatter in low-to-medium 
ranges (actual <50 μm) but significantly increased dispersion in high- 
value regions, highlighting its inability to resolve extreme-value pat-
terns. Poorer-performing models of MLP, ELM, SVR, and KNN display 
widespread deviations from the diagonal. Notably, ELM predictions 
exhibit disordered scattering, corroborating the limitations of shallow 
network architectures in complex nonlinear tasks.

3.2. Bayesian optimization for XGBoost hyperparameter tuning

Building on the comparative analysis of eight machine learning 
models in the preceding section, the XGBoost model demonstrated the 
highest accuracy on the test set (R2 = 0.9574, MAE = 4.2760). To 
further enhance its generalization capability, Bayesian optimization was 
employed for the systematic hyperparameter tuning. Bayesian optimi-
zation, a global optimization method based on probabilistic surrogate 
models, efficiently explores the hyperparameter space within limited 
iterations by constructing Gaussian process estimations of the objective 
function. Its core advantage lies in leveraging prior knowledge to guide 
parameter search directions, significantly reducing computational costs 
compared to conventional grid search.

The optimization objective was established by utilizing the MAE of 
the validation set as the fitness function. Key hyperparameters selected 
for systematic tuning included the number of decision trees (n_estima-
tors), maximum tree depth (max_depth), and minimum child node weight 
(min_child_weight). The parameter search grid, which outlines the ranges 
and intervals for these hyperparameters, is comprehensively described 
in Supplementary Table S2. After 15 iterations of Bayesian optimization, 
the optimal parameter configuration was determined as n_estimators =
173, max_depth = 7, and min_child_weight = 3.

The Bayesian-optimized XGBoost (XGB-Bay) model exhibited sig-
nificant performance improvements, as demonstrated in Table 3. The 
training set R2 increased to 0.99937, accompanied by a 74.2 % reduc-
tion in MAE, indicating markedly enhanced fitting capability to the 
training data. Concurrently, the cross-validation set MAE decreased by 
17.0 %, and the test set MAE decreased by 16.3 %. These enhancements 
stem from Bayesian optimization's precise control over model 
complexity: adjusting the number of trees (n_estimators = 50 → 173) 
enhanced ensemble learning robustness, increasing the tree depth 
(max_depth = 5 → 7) strengthened feature interaction capacity, and 
elevating the minimum child node weight (min_child_weight = 1 → 3) 
effectively mitigated overfitting risks. As illustrated in Fig. 4, the XGB- 
Bay model achieved near-perfect fitting across the training, cross- 
validation, and test sets. Training set predictions formed a dense clus-
ter along the diagonal line, while cross-validation and test set pre-
dictions exhibited minor dispersion in high-value regions but remained 

Table 1 
The input and target descriptors used in the ML models.

Feature Range

Coating compositions 
(wt%)

Ni(31–54.3), Co(12.2–37.8), Cr(13.6–24.2), Al(8–12.8), Y 
(0–0.8), Si(0–1.4), Ta(0–7.2), Ru(0–0.6), Hf(0–0.4), Mo 
(0–0.7), Fe(0–9.6), Ir(0–0.6), Ce(0–0.2)

Temperatures (◦C) 900–1100
Times (h) 0–12,000
Target (μm) GPDZ(0–152.02)

Fig. 2. Distribution of GPDZ values in dataset.

Table 2 
Assessment of ML models.

Model XGBoost GBR RF DT KNN MLP SVR ELM

R2 0.9574 0.9534 0.9108 0.8330 0.5590 0.5573 0.5143 0.4485
MAE 4.276 4.4585 6.0912 7.7494 14.16 13.744 14.631 15.776
MSE 35.321 6.2184 73.944 138.46 365.57 366.96 402.59 457.18
RMSE 5.9432 9.1201 8.599 11.767 19.12 19.156 20.065 21.382
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tightly distributed around the regression line. These observations 
confirm that the optimized model retains robust nonlinear modeling 
capabilities while suppressing overfitting. The lower panel of Fig. 4
compares data distributions across subsets. The training set (211 sam-
ples), cross-validation set (45 samples), and test set (45 samples) 
exhibited highly consistent numerical ranges with the original dataset, 
as evidenced by negligible deviations in kurtosis and skewness. This 
validates the rationality of data partitioning and the reliability of model 
generalization.

Fig. 3. Comparative analysis of predicted values and actual values on the test set, using (a) XGBoost, (b) GBR, (c) RF, (d) DT, (e) MLP, (f)ELM, (g) SVR and (h) 
KNN models.

Table 3 
Performance comparison between XGBoost and XGB-Bay models.

Model R2(train) MAE 
(train)

R2(k- 
fold)

MAE(k- 
fold)

R2(test) MAE 
(test)

XGBoost 0.99031 2.0633 0.97237 3.7516 0.95739 4.2760
XGB- 

Bay
0.99937 0.53215 0.97711 3.1126 0.96959 3.5788

Fig. 4. Performance evaluation on the Bayesian-optimized XGBoost model in training, cross-validation, and testing sets, respectively.
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3.3. Analysis of feature importance

To elucidate the influences of input features on the GPDZ target, 
Pearson correlation coefficient (PCC) analysis was employed to evaluate 
linear correlations between them, as illustrated in Fig. 5a and detailed in 
Supplementary Table S3. PCC values range from − 1 to 1, with absolute 
values closer to 1 indicating stronger correlations. Feature pairs exhib-
iting high PCCs were screened and compiled in Supplementary Table S4, 
where a threshold of |PCC| ≥ 0.7 was adopted to define strong inter- 
feature correlations and asterisks (*) denote p-values <0.05, confirm-
ing that the correlations between variables are statistically significant. A 
strong negative correlation was observed between Ni and Co, as well as 
between Cr and Al. Because Co was the neighboring element of Ni in the 

periodic table of elements and they played a similar role as matrix 
element in the Ni-based superalloys [49,50]. The negative correlation 
between Cr and Al was attributed to the Al–Cr interference effect on 
their chemical potentials during the interdiffusion [25,31].

Fig. 5b ranks the top ten features by absolute PCC values, revealing 
that temperature is the most relevant parameter (|PCC| = 0.51), fol-
lowed by time, Fe content, and Ta content. Fig. 5c illustrates the data 
distribution of Fe and Ta, which exhibit the highest absolute PCCs 
among all coating elements. The addition of Fe significantly increases 
the GPDZ thickness，because Fe promote the phase transition γ′→γ or β. 
In comparison, Ta shows a reverse effect, since Ta acts a role of the γ′ 
stabilized element that impedes the γ′ degradation.

Although Pearson correlation coefficients reveal linear associations 

Fig. 5. Feature correlation and input data distribution analysis. (a) Correlation matrix of all features; (b) Top 10 features ranked by correlation coefficient 
magnitude; (c) Input data distribution stratified by Fe and Ta contents.
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between features and the target variable (GPDZ thickness), they cannot 
adequately quantify the interaction effects and directional contributions 
of features in multivariate nonlinear systems. The significance analysis 
in Fig. 5a indicates that only temperature, time, Fe and Ta possess the p- 
values less than 0.05, which means the other features are not statistically 
significant in terms of their correlation with GPDZ. To address this 
limitation, SHAP (SHapley Additive exPlanations) analysis was per-
formed on the XGB-Bay model to quantify the global contribution of the 
input features on the GPDZ target by calculating robust feature impor-
tance interpretation in nonlinear contexts. As shown in Fig. 6a, features 
with higher absolute SHAP values mean stronger influences on GPDZ 
thickness. The top five influential features are temperature (T), time (t), 
Ni content, Fe content, and Cr content, with Ni content being the most 
critical among coating elements.

To further elucidate mechanistic insights, SHAP visualization was 
employed to illustrate feature-specific positive/negative correlations. 
The SHAP summary plot (Fig. 6b) represents each sample as a point, 
where the x-axis denotes standardized SHAP values (− 2.0 to 2.0) 
reflecting the relative impact of features on model predictions: negative 
values indicate inhibitory effects on GPDZ thickness, while positive 
values denote promotive effects. The y-axis ranks the 15 input features, 
with color gradients (blue to red) representing feature values from high 
to low. As illustrated in Fig. 6b, SHAP values increase with rising T and t 
demonstrating a positive correlation with GPDZ thickness. Temperature 
accelerates GPDZ growth by enhancing the elemental diffusion rates [6]. 
And time governs GPDZ expansion through kinetically controlled 
diffusion distances (Δx∝

̅̅̅̅̅
Dt

√
) [31]. Fe, Cr and Al concentrations exhibit 

positive correlations with GPDZ thickness. In contrast, elevated Ni, Co, 
Si, Y, Ta, and Mo concentrations correlate negatively with GPDZ values. 
These observations are consistent with established findings regarding 
the critical roles of Fe, Cr, Ni, and Co in γ′-phase stability and interdif-
fusion kinetics reported in previous studies [3,23,25,51]. Notably, the 
weaker Ta and Al effects identified in our ML model compared to their 
traditionally recognized strong impacts on GPDZ evolution 
[30,31,49,50,52] could be attributed to dataset limitations-specifically, 
insufficient high-Ta specimens (present >1 % in only 3 % of samples) 
and constrained Al variation range (8–12.8 wt%). This data sparsity 
likely hindered the model's ability to fully capture their characteristic 
phase-stabilization mechanisms. Interestingly, our model revealed pre-
viously underreported inhibitory effects of elevated Si, Y, and Mo con-
centrations on GPDZ growth, a novel finding warranting experimental 
validation through controlled diffusion couples in future research. Hf, Ir, 

Ru, and Ce exhibited negligible correlations consistent with their low 
concentrations (<0.6 wt%) and limited diffusivity in the Ni-rich matrix.

3.4. Applications

3.4.1. Evidence of kinetics prediction
The growth kinetics of GPDZ during the interdiffusion in the B1, B2, 

and B4 coated IN792 superalloys at 1000 ◦C were predicted based on the 
XGB-Bay model (Fig. 7). The results exhibited a stair-shape increasing 
trend (blue solid curves in Fig. 7), which is against the continuous 
growth law of GPDZ. This deviation arises from two factors: data spar-
sity within specific time-temperature domains and the inherent char-
acteristics of tree-based models. As XGB-Bay employs decision trees as 
base learners, abrupt changes in output may occur when input param-
eters cross threshold values defined by the tree-splitting criteria.

To reconcile the ML predictions with fundamental diffusion dy-
namics, the model outputs were further refined using a power-law fitting 
function (red dashed curves in Fig. 7) [53,54]. Supplementary Table S5 
compares the predicted and refined GPDZ values at five time points (0, 
100, 500, 1000, 1500 h). While the refined results exhibited marginally 
higher mean squared errors (MAE: 0.474–1.255) compared to direct ML 
predictions (MAE: 0.174–0.686) at these discrete points (Table 4), the 
fitted curves effectively captured the progressive deceleration in GPDZ 
growth kinetics, consistent with the power-law dependence of 
interdiffusion-driven phase evolution. These results demonstrate that 
while raw ML predictions may exhibit localized discontinuities stair- 
shape results due to algorithmic constraints, post-processing through 
physics-informed fitting functions can effectively reconcile data-driven 
predictions with continuum diffusion principles. The combined ML- 
fitting framework retains the advantages of high computational effi-
ciency while ensuring physically plausible kinetic predictions.

3.4.2. Concept of coating design
The XGB-Bay predicted results with the key impacting compositions 

of Ni, Fe, and Cr at 1100 ◦C for 500 h, are illustrated in a “ternary-phase 
diagram” (Fig. 8a), where the vertex corresponds to the maximum 
concentration of the specie (Ni, Fe, or Cr), and color gradients represents 
the changes of the predicted GPDZ thickness. The increases of both Fe 
and Cr can promote the γ′ depletion, while Ni shows an inverse influ-
ence. Complementing these findings, Supplementary Fig. S6 extends the 
analysis to 900 ◦C and 1100 ◦C, further revealing the temperature- 
dependent interplay between alloy composition and GPDZ evolution. 

Fig. 6. SHAP analysis results, including (a) feature importance ranking and (b) Summary plot of feature impacts.
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At 900 ◦C, the ternary diagram shows Cr exerts a weak positive corre-
lation with GPDZ thickening. However, as temperature escalates to 
1100 ◦C, Cr's role intensifies: its contribution to γ′ depletion becomes 
comparable to Fe. This thermal activation effect aligns with the 
enhanced interdiffusion kinetics at higher temperatures.

It should be noted that the predicted results in the monochromatic 
regions are unreliable, due to the limited composition ranges in the 
current dataset. An effective predicted region (as marked in Fig. 8a) was 
sectioned from the whole diagram through database analysis. The ob-
tained data from 1000 ◦C/500 h interdiffusion tests were employed to 
validate these predicted results in the sectioned region. A high align-
ment between the predicted and measured values can be observed in 

Fig. 8b, confirming the model's robustness in capturing primary Ni-Fe-Cr 
competitive interactions governing GPDZ evolution. Minor deviations in 
coatings are attributed to secondary influences from other elements: B0, 
B1, B2, B3, and B4 coatings exhibited elevated GPDZ values due to the 
absence of Ta (a γ′-stabilizing element), while D72 coating showed 
increased GPDZ thickness resulting from its low Co content and rela-
tively higher Al concentration compared to B13.

The results above demonstrate the reliability of XGB-Bay ML pre-
dicted GPDZ distributions across MCrAlY coating systems. Modern aero- 
engines demand thermal barrier coatings (TBCs) that synergistically 
combine oxidation resistance and substrate stability under extreme 
conditions. Fig. 9a illustrates the GPDZ thickness-composition rela-
tionship for B13 coatings at 1000 ◦C/168 h, with over 80 % of the 
validated prediction zone exhibiting a low GPDZ thickness <20 μm. 
Comparative analysis with the high-temperature-oxidation ML model in 
Ref. [55] (Fig. 9b), which maps lnkp values to evaluate oxidation resis-
tance in Ni-Fe-Cr systems, reveals an overlapping blue region (GPDZ 
<20 μm and lnkp < − 14.1) in both studies. This convergence identifies a 
composition window (Ni:68–78 wt%, Cr:22–32 wt%, Fe:0–10 wt%) that 
simultaneously achieves a superior oxidation resistance and also a great 

Fig. 7. The predicted GPDZ evolution with time in the (a) B1-, (b) B2-, and (c) B4-coated IN792 superalloy at 1000 ◦C. The plotted red points denote experimental 
data from the dataset.

Table 4 
MAE evaluation of ML predictions and refined results.

Sample Predicted MAE (μm) Refined MAE (μm)

B1 0.186 0.474
B2 0.520 0.888
B4 0.580 1.312

Fig. 8. GPDZ thickness predictions under compositional variations of Ni, Cr, and Fe in B13-coated samples at 1000 ◦C for 500 h. Contour plots illustrate the sys-
tematic modulation of GPDZ thickness in response to Ni, Cr, and Fe content adjustments.

H. Xu et al.                                                                                                                                                                                                                                       Surface & Coatings Technology 513 (2025) 132448 

8 



microstructural stability, demonstrating our model's utility in guiding 
TBCs design.

Compared with traditional thermodynamic approaches, Our ML 
model provides a high-efficiency alternative enabling rapid GPDZ pre-
diction with 99 % less computational time than CALPHAD-based sim-
ulations. It resolves multicomponent competitive interactions while 
retaining interpretability through SHAP analysis. Current limitations 
arise from dataset sparsity in high-temperature regimes and unmodeled 
microstructural factors. Future efforts will integrate active learning with 
high-throughput experiments to expand predictive accuracy across 
broader composition-temperature space.

4. Conclusions

In this research, eight ML frameworks were pioneered to predict 
γ′-depleted zone (GPDZ) evolution during the interdiffusion in the 
MCrAlY-coated IN792 superalloys, where the 301 experimental datasets 
were especially established from high-temperature tests. By combining 
the ML and experimental results, the following conclusions could be 
clarified: 

(1) The XGBoost model optimized via Bayesian optimization 
demonstrated the superior predictive accuracy (R2 = 0.9696, 
MAE = 3.579) on the dependence of GPDZ on time, temperature 
and chemical compositions.

(2) Pearson correlation and SHAP analysis revealed the dominant 
kinetic drivers of temperature and time, the suppressed roles of 
Ni, Co, and Ta, as well as the accelerated influences of Fe, Cr, and 
Al on the growth of GPDZ, which were consistent with the prior 
reports of Al-Cr chemical potential coupling and Fe-induced γ′→γ 
phase transitions.

(3) The refined model was not only employed to predict the growth 
kinetics of GPDZ with temperature, time and compositions, but 
also strongly evidenced to direct the coating design with the 
lower interdiffusion-induced microstructural degradation.

(4) Although the ML model identified the robust predictive perfor-
mance within the tested parameter range, its accuracy still re-
mains contingent on the quality of the dataset. Future work will 
focus on employing high-throughput experiments to establish 
comprehensive and precise databases, thereby improving the 
model accuracy and generalizability to support the optimization 
strategy of next-generation bond coatings.
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