Enhanced mechanical and tribological properties of V-Al-C coatings via increasing columnar boundaries

Zhenyu Wang, Hao Kang, Rende Chen, Peiling Ke **, Aiying Wang*

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

ABSTRACT

Grain size, growth morphology, and grain boundary were considered to affect hardness and fracture toughness of hard coatings. An effective approach is currently developed to improve their hardness and toughness via tailoring their architectures through grain boundary control. V-Al-C coatings consisting of variable architectures were prepared by reactive sputtering V2AlC target with different CH4 flow rates in this study. The results indicated that, when the carbon content increased from 37.32 at.% to 71.4 at.%, the microstructure of V-Al-C coatings was tailored to span a wide changes from coarse columnar grain to fibrous columnar grains and finally to nanocomposite structure consisted of the (V, Al)C nanocrystallites and sp²-rich a-C. Especially, the maximum hardness of 28.74 GPa and the excellent toughness with high H/E value of 0.11 were obtained once the coating displayed fibrous columnar structure, such good mechanical properties benefited the lowest wear rate of $2.8 \times 10^{-10} \text{ m}^3/\text{N}\cdot\text{m}$. Instead, the nanocomposite structure showed the lower fracture resistance due to the dominated amorphous carbon matrix. All coatings with nanocomposite structure exhibited low friction coefficient of ~0.18, which was attributed to the coupling lubrication originated from both V2O5 Magnéli phases and amorphous carbon formed during friction process. The enhanced mechanical and tribological properties were also discussed in terms of the columnar boundaries evolution as a function of carbon content.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

During the last years, binary transition metal nitrides (TMN) or carbides (TMC) hard coatings have been extensively used to enhance the wear-resistance properties of mechanical components, i.e., cutting, forming and machining tools [1–4]. To maximize the operation efficiency of mechanical components, various ternary and quaternary hard coatings by multicomponent alloying have been fabricated to obtain the combination of superior mechanical properties, good fracture toughness as well as high oxidation resistance [5], such as Ti-Al-N [6], Ti-Al-Si-N [7], Cr-Si-N [8], Cr-B-N [9], Ti-Al-B-N [10] and Ti-Cr-Al-N [11]. Nevertheless, these coatings suffer from relatively high friction coefficient during the dry machining processes, which are extremely serious for Ti- or Cr-based hard coatings. Recently, it is found that the V-based coating presents a low friction and wear in a wide temperature range [293–993 K] [12,13], due to the formation of V2O5 self-lubricant phase, called Magnéli phase, which makes it a strong candidate material for harsh dry machining condition. On the other hand, it is empirically known that the hardness, toughness and tribological property dominate the wear-resistance of hard coatings, which are dependent upon the coating structure [4]. As a convenient and versatile method, nanocomposite coatings consisting of nanocrystalline/amorphous phase mixture benefit the combination of higher hardness, better toughness, and superior wear-resistance [14,15]. According to the amorphous matrix feature, three groups of nanocomposite hard coatings were clarified: 1. nc-MeN/a-nitride (e.g. a-BN, a-Si3N4, etc); 2. nc-MeN(C)/metal (e.g. Cu, Ni, Ag, Y, etc.); 3. nc-MeN(C)/a-C [1]. For instance, Pei, et al. [16,17] deposited TiC/a-C:H nanocomposite coating by magnetron sputtering, and observed that the good toughness together with ultra-low friction coefficient was achieved by modifying acetylene gas rate and substrate bias. However, similar optimized mechanical properties were not commonly observed for all nanocomposite coatings. Yalamanchili et al. [18,19] found that the Zr-Si-N coatings with columnar nanostructure displayed the maximum hardness of 37 GPa, lowest wear...
rate and good fracture toughness. When the nanocomposite structure emerged in the Zr-Si-N coating with increase of Si addition, however, the mechanical and wear-resistance dramatically decreased. The fundamental dependence of nanostructure on the mechanical and tribological performance for hard coatings was still lack of understanding.

Due to the versatile atomic bonds and facile deposition methods, amorphous carbon based coatings provide a great potential for producing hard coatings with tailored nanostructure from nanocolumnar to nanocomposite. By controlling carbon content in coating, El Mel et al. [20] constructed the Ni/C nanocomposite coatings with different size, distribution, density, and shape of Ni-rich nanoparticles embedded in a-C matrix. In addition, the combined improvement of mechanical and tribological properties could be achieved when the amorphous carbon (a-C) located in nanocrystalline grain boundaries [21,22]. Yet, various Ti-/Cr-based nanocomposite coatings containing a-C have been fabricated in recent years, such as Ti-C-N, Ti-Al-C-N, Ti-Si-C-N, Cr-Si-C-N, Cr-C-N, etc [23–26], but V-based nanocomposite hard coating has merely been studied. In our previous work, hard and tough V-Al-C coatings were prepared on the polished high speed steel (HSS) with the size of 15 mm × 15 mm × 3 mm and silicon-(100) substrates using the magnetron sputtering system. The substrates were cleaned ultrasonically in ethanol and acetone for 30 min, respectively, before putting them into the deposition chamber, then the base vacuum was pumped to less 2 × 10⁻³ Pa. To enhance the adhesion strength, substrates were pre-etched by Ar⁺ bombardment for 30 min, and then a Ti interlayer (~300 nm) was deposited using magnetron sputtering. More detailed parameters could be found in elsewhere [28]. Then, V-Al-C coatings were prepared in argon/methane (Ar/CH₄) gas mixture with working pressure varying from 0.8 to 0.95 Pa. During the coating deposition process, Ar with the flow rate of 100 sccm was introduced, while CH₄ flow rate was adjusted from 0, 5, 10, 15 to 20 sccm to regulate carbon content in coatings. Pulsed substrate bias and target to substrate distance were fixed constant at ~300 V and 160 mm during all deposition process, respectively. Before characterization, the samples of V-Al-C coating were labeled S-0, S-5, S-10, S-15 and S-20 according to the CH₄ flow rate.

2.2. Characterization

The composition and chemical bonding states of the coatings were determined by XPS (Kratos Axis ULTRA DLD). The XPS spectra were obtained after removing the surface layer about 100 nm in situ Ar⁺ ions sputtering process and were calibrated by C 1s peak at 284.8 eV. Structure investigations were characterized by the grazing incidence X-ray diffraction (GIXRD, Bruker D8 Advance) equipped with a Cu Kző radiation source (1.5° grazing angle). The cross-sectional morphologies were examined by a SEM (Hitachi S4800). Raman spectra (Renishaw Via-reflex) with the 532 nm laser excitation were applied to assess the sub-structures of carbide and carbon atomic bonds. The spectrum from 200 cm⁻¹ to 1800 cm⁻¹ covers the acoustic and optical vibration bands of TMC and the disordered graphite bands of a-C. Furthermore, the microstructural characterization of the coatings was obtained by using high-resolution transmission electron microscopy (HRTEM, FEI TF20).

Hardness and elastic modulus were evaluated in a nano-indentation tester (MTS G200) using a Berkovich indenter with the continuous stiffness mode and Oliver-Pharr method [29], and the indentation depth was about 10% of the coating thickness to avoid the substrate effects. Ten repeated measurements were carried out to minimize the measurement error. Fracture toughness was obtained by the cracks under Vicker's indentation at a load of 500 g. The formed cracks were observed by SEM. At least 3 indentations were conducted and fracture toughness was calculated from average results. The fracture toughness, KIC, was established according to the following formula (1):

$$K_{IC} = \frac{E}{H} \frac{1}{\sqrt{2\pi a}}$$

where KIC is the fracture toughness, E is the elastic modulus, H is the hardness, P is the indentation load, c is the average crack length from the center of the indent to the crack tips, and α is an empirical constant which depends on the indenter geometry. For a Berkovich indenter α is ~0.016 [30].

Tribological measurement was performed by a ball-on-disk reciprocating tests against Al₂O₃ balls (Φ6 mm), where the hardness and elastic modulus of Al₂O₃ balls were 18.5 GPa and 380 GPa, respectively, on the tribometer system (CETR, UMT-3). The tests were carried out under the applied normal load of 5 N, velocity of 5 cm/s and frequency of 5 Hz, and the total sliding time was 1800 s. After that, the section profiles of wear track were performed by a surface profilometer tester. The calculated method about wear rates has been referred to in previous studies [31]. The morphologies and chemical composition of the wear tracks were characterized by SEM equipped with EDX, and the Raman spectra.

3. Results and discussion

3.1. Chemical bonding and phase constitution

The dependence of composition and constitution of the prepared coatings on the various CH₄ flow rate are given in Fig. 1a. With increasing the CH₄ flow rate from 0 to 20 sccm, the C content in the V-Al-C coatings monotonically increased from 37.32 at% to 71.4 at%, while both V and Al content in coatings decreased from 48.52 at% to 18.05 at% and 11.8 at.% to 6.85 at.%, respectively. The concentration of oxygen contaminant in all coatings was found to be lower than 6 at.%, possibly resulting from low vacuum degree.

To clarify atomic bonds of carbon in coatings, Fig. 1b shows the typical XPS C 1s spectra of the V-Al-C coatings under various CH₄ flow rates. After being fitted, the spectra of all samples consisted of two peaks at 282.9 eV and 284.8 eV, which could be assigned to C-V and sp² C-C bonds respectively. With increasing the CH₄ flow rate from 0 to 20 sccm, the intensity and fraction of C-V bonds...
decreased, and in contrast those of C-C bonds increased. For the S-0 and S-5, in which the C content was lower than 46.92 at.%, the C-C peaks were weak, suggesting that the C atoms were mainly bonded to V atoms. While, the C-C bonds became dominate peak in spectra for S-10 and S-20, where the C content was over 58.33 at.%. Meanwhile, a small amount of C-O bonds appeared in these spectra due to the probable residual oxygen content in gas precursor. Al 2p spectra of the coating S-20 as the representation was shown in the insert of Fig. 1b, suggesting that Al mainly existed in the forms of Al metallic state in addition to some Al-O bonds. Additionally, no peaks of C-Al bonds were identified in all coatings, implying Al might exist in the coatings as solid solution.

Fig. 2 shows the GIXRD results of V-Al-C coating with various CH4 flow rates. Three diffraction peaks 2\(\theta\) of about 37.45\(^{\circ}\), 43.67\(^{\circ}\) and 62.54\(^{\circ}\) could be observed in all coatings, which corresponded to the reflections of VC (111), (200) and (211) phase, respectively. However, three diffraction peaks all shifted towards the higher diffraction angle compared to those of the standard fcc-VC phase (PDF#65-8825), indicating the lattice parameter for the formed VC crystalline in coatings was smaller than that of the ideal fcc-VC phase. The shrunk lattice was probably attributed to the partial substitution of V atoms by smaller Al atoms [32]. According to the combined XRD and XPS results, it could thus be proposed that all V-Al-C coatings showed a NaCl-type fcc-(V, Al)C crystalline structure. Meanwhile, the diffraction peaks from S-5 to S-20 became broader and the intensity of the peaks decreased gradually compared with those of the sample S-0, revealing that the incorporated carbon not only refined the nanocrystallites but also decreased the crystalline degree.

The hybridized bond structure of the deposited coatings was also assessed by Raman spectroscopy, as shown in Fig. 3. Noted that the presence of two regions was observed, one from 100 to 1000 cm\(^{-1}\) resulting from VC compound; another from 1000 to 1800 cm\(^{-1}\) originated from the a-C phases [33]. In particular, when the C content was over 58.33 at.%, the appearance of a broad band between 1350 and 1600 cm\(^{-1}\) for C-C bonding could be identified to the typical amorphous carbon feature. In general, it can be fitted into two peaks at 1350 cm\(^{-1}\) and 1580 cm\(^{-1}\), corresponding to D peak and G peak (shown in Fig. 3b) for the a-C respectively, where the D peak is produced by the breathing mode of only aromatic sp\(^2\) bonds and the G peak originates from sp\(^2\) bonds in both aromatic rings and chains. Since the intensity ratio of D peak to G peak (\(I_D/I_G = 2.37\), inserted in Fig. 3b) is closely related to the sp\(^2\) cluster size in C-based coatings, introducing C to V-Al-C coating not only facilitated the formation of a-C, but also preferred to bond as sp\(^2\)-C formation in the carbon matrix. Therefore, we could conclude that the coatings for S-0 and S-5 were mainly consisted of (V, Al)C polycrystalline, but the coatings of S-10, S-15 and S-20 were characterized to be nanocomposite structure comprised of (V, Al)C nanocrystallites and sp\(^2\)-rich a-C matrix.

3.2. Morphology and nanostructures

The cross-sectional morphologies of V-Al-C coatings with various CH4 flow rates were shown in Fig. 4. It was clearly seen that the coatings comprised of two layers: one was Ti interlayer of 230 ± 20 nm thickness with obvious columnar structure, and another was 1800 ± 100 nm top-layer V-Al-C coatings. With increasing the C content, the grain refinement of the coatings appeared clearly. For the case of S-0, the coating displayed a wider columnar-type structure, as shown in Fig. 4a. When the CH4 at 5 sccm was introduced, the morphology of the coating S-5 became fibrous and dense columnar structure (Fig. 4b). When the CH4 at 5 sccm was introduced, the morphology of the coating S-5 became fibrous and dense columnar structure (Fig. 4b). Combined with the above-mentioned phase structure analysis, we speculated that the formation of sp\(^2\)-rich a-C probably embedded in the grain boundaries, and therefore hindered the grain growth along the lateral direction. Further increasing CH4 flow rate to 10 sccm, the distinct columnar structure disappeared in the coating accompanying a featureless structure for S-10. This featureless gradually became more compact structure with a smooth surface for case of S-15 and
S-20 coatings. More information about the width of columnar grain and grain size would be discussed in terms of TEM and HRTEM results due to the limited resolution of SEM.

Fig. 5 shows the cross-sectional TEM overview morphologies and corresponding selected area electron diffraction (SAED) of the V-Al-C coatings with various CH$_4$ flow rates. For the case of S-0, it could be seen from Fig. 5a-b that the coating presented a typical columnar structure with the columnar width of 30–50 nm, elongating the whole coating thickness. The inserted corresponding SAED pattern Fig. 5a was identified to four distinct rings, which assigned to (111), (200), (220) and (311) orientations of fcc-(V, Al)C phase. Noted that the current (311) orientation was not visible in the GIXRD results, this should be attributed to the weak crystalline of the coating or the limited resolution of GIXRD. When the CH$_4$ was doped (S-5), the columnar nanostructure like nano-pillar was still presented in Fig. 5c-d, but with much finer and shorter columnar width (10–20 nm) compared to that of S-0 case, which was consistent with the SEM results. Further increasing CH$_4$ flow rate to 10 sccm (S-10), the columnar structure in the coating disappeared, as shown in Fig. 5e-f. Instead, nanoparticles with grain size of 4–8 nm dispersing in the amorphous carbon matrix were shown in Fig. 5e. Moreover, the SAED in the insets exhibited the continuous ring, resulting from the finer nanostructures and the increased carbon content. Further increasing CH$_4$ flow rate to 15 sccm (S-15, Fig. 5g-h), the coating displayed a nanocomposite structure, which consisted of spherical nanocrystalline (V, Al)C grains distributed in a-C matrix, accompanying with a further reduction of columnar size (3–5 nm), as shown in Fig. 5h. Compared to S-10, however, the SAED patterns inserted in Fig. 5g exhibited the wider and dimmer continuous rings, corresponding to the increased amount of amorphous carbon [34]. In summary, it was made clear that, by controlling the carbon content from 37.32 at.% to 71.4 at.% in V-Al-C coatings, the coating microstructure was tuned accurately from coarse columnar grain to fibrous columnar grains, and finally to nanocomposite structure consisted of the (V, Al)C nanocrystallites and sp2-rich a-C matrix. Meanwhile, the size, distribution, and shape of (V, Al)C nanocrystallites within a-C matrix could also be controlled well.
Fig. 5. Cross-sectional TEM image and enlarged view of the S-0 coating (a)(b), S-5 coating (c)(d), S-10 coating (e)(f) and S-15 coating (g)(h).
3.3. Hardness, fracture and tribological properties

The hardness (H) and elastic modulus (E) of the V-Al-C coatings depending on CH₄ flow rate are illustrated in Fig. 6a. It was found that a low H and E value of 14.43 ± 1.7 GPa and 210 ± 5.5 GPa were obtained for S-0, respectively. When 5 sccm CH₄ was introduced, the H and E increased dramatically to 28.74 ± 1.59 GPa and 274 ± 7.2 GPa (S-5), which decreased with further increasing CH₄ from 5 to 15 sccm. But the arresting result was that the reduction degree of hardness was more serious than that of Young’s modulus. According to J. Musil’s reports [35], the maximum hardness (Hmax) was achieved at a critical grain size (d_c ≈ 10 nm). When d > d_c, the hardness increased with decreasing grain size based on the Hall-Petch law. While in term of d < d_c, the chemical and electronic bonding state between atoms in nanostructure plays a key role. As shown in Fig. 5h, the grain size of coating became smaller than d_c when the CH₄ flow rate increased to 10 sccm, which suggested the finer grain size and the more fraction of a-C, the less hardness and Young’s modulus were observed. This result agreed well with the obtained same structure and mechanical properties of binary metal co-doped a-C films [36], especially one carbide-forming metal element and another non-carbide-forming metal one. Li et al. [36] manipulated the Ti/Al co-doped amorphous carbon coatings with various metal content, and found that the hardness ranged from 13.1 ± 0.3 GPa to 16.4 ± 0.3 GPa when the co-doped Ti/Al content changed from Ti₃.3 at.%/Al₂.6 at.% to Ti₈.5 at.%/Al₁₄.4 at.%.

Fig. 6b shows the H/E and H³/E² ratio of the coatings, representing the resistance against elastic strain to failure and the resistance to plastic deformation, respectively [37,38]. Similar to the tendency of H and E as a function of CH₄ flow rate, the maximum H/E (0.105) and H³/E² (0.318 GPa) value were observed for S-5 coating with CH₄ flow rate of 5 sccm. Since the high H/E ratio can delay elastic to failure and high H³/E² indicates a good resistance to cracks deformation together with cracks propagation, the S-5 coating displayed the best wear-resistance in present situation. Namely, the V-Al-C coating with fibrous columnar structure elongated grains in amorphous matrix benefited the combined excellent fracture toughness and high hardness than those of the coating with nanocomposite structure.

The fracture toughness, K_{IC}, is the ability to resist crack propagation during deformation up to fracture, which is one of the important mechanical properties of a material [39]. Indentation is an empirically used technology to evaluate the fracture property of the coating [40], but the accurate determination of toughness is an open challenge yet. By using a Vickers indentation technique with a load of 5 N, we elucidated the fracture property of the V-Al-C coatings behaving different nanostructure, as shown in Fig. 7. The inserted images in Fig. 7 illustrate the formed in the indentation corners and expanded outwards. The crack length c decreased when the CH₄ was introduced. The calculated fracture toughness of the V-Al-C coatings increased to the maximum of 2.25 MPa m¹/² at S-5, where exhibited a nanocolumnar structure, and then gradually declined to 1.1 MPa m¹/² at S-20 with nanocomposite structure. These were in accordance with the previous H/E ratio as shown in Fig. 6b. Generally, the fracture toughness of hard coatings was improved via alloying soft phase to form nanocomposite structure or developing metal/ceramic nano-scaled multilayer coatings, suppressing the high stress centered in the ceramic layers [41]. According to our results, the fracture resistance of hard coating was significantly improved by increasing the columnar grain boundaries with lower shear strength, providing the pathway for the crack deflection. This phenomenon of modifying the fracture resistance induced by microstructural was also explored in Zr-Si-N coatings [42].

Fig. 8 shows the tribological properties of V-Al-C coatings with various CH₄ flow rates. The friction coefficient fluctuated severely from 0.5 to 0.7 during the sliding for coating S-0, and the poor wear rates of 3.64 × 10⁻¹⁴ m³/Nm was achieved. Fig. 5a presents the wear...
track morphology, where the wear track was much wider and the coating was worn out. When CH$_4$ was introduced, the friction coefficient gradually increased to the stable sliding period after a short running-in process. Furthermore, the friction coefficient and wear rates drop to 0.45 and 2.7 \times 10^{-6} m3/Nm for the coating S-5. When further increasing the CH$_4$ flow rate, the friction coefficient dramatically decreased to 0.21, and then kept almost constant till S-15. This phenomenon could be attributed to the self-lubrication arising from the formed graphite-like transfer layer induced by the increase of amorphous carbon. However, the friction curves displayed an unusual fluctuation within 0.1–0.2 in case of S-20. From Fig. 9 b-e, the wear tracks for coating S-5 to S-20 seemed to be extremely smooth and no cracks or spalling were found, even the width of wear track showed slight difference. The loose wear debris was evenly distributed on the sides of wear track without severe debris agglomeration. It should be noted that the coating S-5 behaved the lowest wear rate in spite of its relatively high friction coefficient owning to the aforementioned toughness analysis, and the toughness was supposed to be the dominated reason for such excellent wear-resistance, because the coatings with good fracture toughness was usually followed by excellent wear-resistant properties [39].

To clarify the tribological mechanisms, EDS and Raman analysis were carried out for the wear track and wear debris adhered on worn surface of the coating S-15, representatively. As shown in Fig. 10, the obvious oxidation reaction occurred during the sliding, as evidenced from Raman spectrum, where the peaks of V$_2$O$_5$ were visible from wear debris [43]. This revealed that the V-based coatings were oxidized and thereafter formed the vanadium oxides during sliding. Since the V$_2$O$_5$ Magneli phase benefits the slipping easier due to lower shear strength [44], the vanadium oxides in deed acted as the lubricants during tribo-process, beyond of the lubricant contribution from graphite like carbon transfer layer induced by amorphous carbon phases. Finally, we could conclude that, after introducing CH$_4$, the relatively lower friction and lower wear of coating were attributed to the coupling lubrication resulting from the a-C and formed V$_2$O$_5$, as well as superior fractural toughness to tolerant deformation.

3.4. Growth mechanism induced by columnar boundaries

To investigate the structural engineering effect on the mechanical and tribological properties of V-Al-C coatings, we can dependently compare the structural evolution with various introduced carbon content. Fig. 11 demonstrated the supposed structural zone diagram with four regions according to the progressive
structural changes. The zone I represents the typical columnar structure formed in V-Al-C coating, which is governed by the limited atomic mobility on the growth front at low pressure and low temperature during magnetron sputtering technique [45]. Increasing carbon content led to the refining of grain size, corresponding to Zone II, in which the fibrous columnar structure was observed. This could be explicated by the combined effects, including the carbon solubility in metal carbide, the deposited atomic ratio between vanadium and carbon, and atoms diffusion rate. Because of the limited C solubility in metal carbide, the formation of V-Al-C crystallites ejected extra carbon atoms towards the growth front surface with further increase of carbon content [32]. Moreover, the fraction of formed V-Al-C crystallites was quite higher than that of the extra free carbon in Zone II. The extra carbon was dynamically movable under ion bombarding as far as they randomly condensed between the V-Al-C columnar crystals, where columnar boundaries had the lowest total free energy. As a consequence, the condensation of free carbon at the columnar boundaries would block the lateral growth (e.g., parallel to the surface of the substrate) of these V-Al-C columnar crystals, and thereafter, their growth would preferentially elongate the growth direction (e.g., direction perpendicular to the surface of the substrate). Note that no multiphase structure consisting amorphous carbon was identified in such Zone II.

Further increasing the carbon content over 45 at.% led to the reduction of vanadium content in coating, where the extra carbon was involved in the formation of amorphous carbon. Moreover, the existence of Al in the V-Al-C system would contribute to the precipitation of a-C [46]. In this condition, the increased fraction of the accumulated amorphous carbon would significantly suppress the continuous growth of columnar crystallite, as a result of the enhanced coverage rate of carbon and reduced diffusion rate of vanadium. This produced the emergence of a nanocomposite structure with discrete spherical or elongated nano-particles surrounded by a-C matrix (shown in Zone III and IV). Thus, it could be clarified that the modulation of the V-Al-C crystallites was originated from a competition between phase separation and continuous deposition of sputtered particles on the surface [45]. If the growth rate of V-Al-C crystallites along the deposition direction was kinetically slight faster than the deposition rate of carbon, the elongated V-Al-C nanocrystallites would be the dominated structures, as illustrated as Zone III in Fig. 11. However, once the vertical growth of V-Al-C crystallite was quite lower than the coverage rate of carbon, the shape of the V-Al-C nanocrystallites changed to the spherical structure surrounded by amorphous carbon, as shown in Zone IV [20].

Regarding the combined evolution of structure and physical properties of V-Al-C coating in Zone II, it was clear that the fibrous columnar structure benefited both the highest hardness of 28.74 GPa and fracture toughness of 2.25 MPa m$^{1/2}$, which thereafter rendered the lowest wear rate of 2.7×10^{-16} m3/Nm. In general, when the adhesive energy of the interface is much lower than the cohesive energy of the coating, the crack will be diverted to the interface. The literature on indentation-induced fracture studies have indicated, for multilayer coatings, that the incoherent interfaces between the layers offered the pathway for crack deflection and additional energy dissipation [47–49]. While in case of the monolithic coatings, the crack deflection occurred on the columnar grain boundaries regions with lower shear strength. In our case, increasing the carbon content in V-Al-C monolithic coatings to an optimized range (Zone II), the refined columnar grain and improved interface density were obtained. Therefore, the
The important result in this study was that the V-Al-C coating with and the coupling lubrication of both a-C and V2O5 coatings, accompanied by reducing the hardness and friction coefficient, nanocomposite structure began to emerge in the H/E conditions, Wear 267 (2009) 882–889.

